Октан корректор для бесконтактного зажигания своими руками

В настоящее время многие автолюбители проявляют повышенный интерес к устройствам электронного регулирования угла опережения зажигания (УОЗ) или октан-корректорам (ОК), которые позволяют на 5-10% экономить топливо и адаптировать двигатель к топливу различного качества, повышают максимальную мощность и снижают токсичность выхлопа.

Существующие схемные решения имеют некоторые недостатки:

  • задержка УОЗ производится на фиксированный период времени, что при разных оборотах вала двигателя соответствует разному УОЗ [1, 2];
  • при построении схем задержки фиксированного УОЗ значительно возрастает их сложность [3, 4, 5].

С учетом вышесказанного авторы разработали простой и эффективный ОК, в котором при любых оборотах вала двигателя УОЗ остается постоянным. Структурная схема ОК показана на рис.1. Принцип его роботы основан на пропорциональности задержки УОЗ от периода вращения вала. Последовательность импульсов, в которой в некоторых пределах необходимо задержать положительный фронт, формируется прерывателем и поступает на вход схемы. При этом длительность паузы используется как опорная величина, которая фиксируется генератором опорной частоты G1 и реверсивным счетчиком СТ, работающим в режиме стека, т.е. при низком уровне на входе ±1 он работает на увеличение счета (накапливание информации), а при наличии на том же входе высокого уровня он работает на уменьшение (считывание накопленной информации).

В первом случае работает генератор G1, а во втором – генератор G2, а G1 блокируется, частоту которого можно изменять. При равенстве частот G1 и G2 задержка УОЗ составит 90 град., поэтому для обеспечения задержки до 30 град. необходимо, чтобы частота G2 было в 3 и более раза выше частоты G1. По окончании счета, когда счетчик отдал всю накопленную информацию, на его выходе Р формируется сигнал, который устанавливает на выходе RS-триггера высокий уровень, блокирует работу счетчика и является задержанным выходным сигналом. В исходное состояние схема возвращается при приходе на ее вход низкого уровня, который сбрасывает RS-триггер, и цикл повторяется.

Принципиальная схема OK и диаграммы ее работы показаны на рис.2 и рис.3 соответственно. На входе схемы установлен фильтр низкой частоты R3-C3, который совместно с ячейками DD1.1, DD1.4, содержащими на входе триггеры Шмитта, исключает влияние дребезга контактов прерывателя на работу схемы. Генератор G1 собран на DD1.3, DD1.2, R7, С2 и для исключения переполнения счетчиков DD2, DD3 при низких оборотах вала двигателя настроен на частоту 1 кГц. Генератор G2 собран на DD1.1, DD1.2, R4, R5, С1. Переменным резистором R4 можно изменять его частоту от 3 до 90 кГц, что обеспечивает регулировку У03 от 30 до 1 град. соответственно. Счетчики DD2, DD3 включены каскодно, что позволяет увеличить их общую емкость до 256 бит. Счетчики сначала накапливают информацию о длительности замкнутого состояния контактов прерывателя, а после их размыкания считывают ее. При полном считывании накопленной информации на выводе 7 счетчика DD3 появляется кратковременный отрицательный импульс, который через ячейку D04.3 переключает RS-триггер, собранный на ячейках DD4.2 н DD4.4, с инверсного выхода которого формируется сигнал блокировки счетчика DD2 и через DD4.1, R6, VT -выходной задержанный сигнал.

Детали. Микросхему К561ТЛ1 можно заменить на К561ЛА7, но при этом после фильтра НЧ необходимо установить триггер Шмитта, собранный по любой известной схеме. Стабилитрон VD любой на напряжение 5-9 В. Транзистор КТ972 можно заменить парой КТ3102, КТ815 (КТ817).

Конденсаторы С1 и С2 необходимо выбрать однотипными или с одинаковым ТКЕ, как можно ближе к нулевому значению. То же касается и резисторов R5, R7. Параллельно каждой микросхеме, по шинам питания желательно установить керамический конденсатор емкостью 0,1 мкФ, а параллельно VD – танталовый электролитический конденсатор.

Настройка. Для настройки генераторов необходимо установить щуп частотомера на вывод 4 микросхемы DD1.2, после этого на вход схемы подать низкий логический уровень и подобрать резистор R7 так, чтобы частота генератора составила 1 кГц. Далее установить ползунок резистора R4 в нижнее по схеме положение, подать на вход высокий логический уровень и подобрать резистор R5 ток, чтобы показания частотомера равнялись 90 кГц, что будет соответствовать задержке У03 в 1 град.

В верхнем положении ползунка R5 частота генератора должна быть около 3 кГц, что соответствует задержке У03 в 30 град. При желании эту величину можно изменять в большую или меньшую сторону, меняя номинал R4, который устанавливается на панели управления. Провода желательно экранировать.

Автор: В. Петик, В. Чемерис, г.Энергодар, Запорожская обл.

1. Ковальский А., Фропол А. Приставка октан-корректор //Радио.-1989.-№6.-С.31.

2. Сидорчук В. Электронный октан-корректор // Радио. -1991.-№11.-C.25.

3. Беспалое В. Корректор угла ОЗ // Радио.- 1988.-№5.-с.17.

4. Архипов Ю. Цифровой регулятор угла опережения зажигания // Радиоежегодник.-1991.-С.129.

5. Романчук А. Октан-корректор на КМОП микросхемах // Радиоежегодник.-1994. -И5.-С.25.

ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ

ОПЕРЕЖЕНИЕ С ОПОЗДАНИЕМ

Кому не знакомо: отъехал от колонки, надавил на педальку, а из-под капота — дзынь, дзынь.

Читайте также  Инструмент для антикоррозийной обработки автомобиля

«Дзынь-дзынь» по-ученому называется детонацией — это подтвердит любой учебник. Насчет более точного определения мнения расходятся — одни говорят о быстром горении, других устраивает пресловутый «стук пальцев». Однако есть и другая точка соприкосновения — все солидарны в том, что ездить на дрянном бензине нельзя. Но. не выливать же! Да и где гарантия, что на соседней колонке нальют получше? Остается одно — поднять капот и сдвинуть трамблер. Или. а вот насчет «или» мы сейчас и поговорим.

Октан-корректор — явление национальное: что-то вроде замполита в армии. Современному двигателю, заправленному нормальным топливом, такие помощники не нужны — но где же среднему соотечественнику взять и то, и другое?

Зато есть «третье» — тот самый корректор. На фото представлены шесть разноименных изделий, позволяющих управлять углом опережения зажигания с места водителя.

Все представленные октан-корректоры имеют несложную электронную начинку, большей частью основанную на публикациях радиолюбительских изданий. Поэтому свою основную задачу — дистанционное управление опережением зажигания — они выполняют довольно просто: ЗАДЕРЖИВАЮТ сигнал от датчика, будь то механический прерыватель или бесконтактный. Чем сильнее повернута ручка потенциометра, тем больше задержка — вот и все. А поскольку величина вносимой задержки зависит еще и от частоты вращения коленвала, то поворот регулятора равносилен повороту корпуса распределителя. Уменьшить угол опережения таким способом, естественно, нельзя — отрицательных задержек не бывает. Поэтому большинство изготовителей (кроме № 5) предлагают сначала все-таки нырнуть под капот и установить заведомо раннее зажигание, после чего возвратить его к номиналу посредством электроники. При этом создается иллюзия, будто октан-корректор способен регулировать угол опережения как «в плюс», так и «в минус».

Вносимая корректорами задержка не превышает нескольких миллисекунд. Этого с лихвой хватает, чтобы регулировать угол опережения в пределах до 12–16° по коленвалу во всех режимах, кроме пуска — там нужны задержки на порядок больше. Поэтому упомянутый выше поворот корпуса распределителя обязательно приведет к излишне раннему зажиганию при прокрутке стартером.

Впрочем, во всем могут быть свои плюсы. Обратимся к таблице, в которой отмечены дополнительные особенности октан-корректоров. Изделия № 3 и 6 снабжены выключателями, позволяющими оперативно «восстанавливать статус-кво». Это может пригодиться при отказе изделия, а также при переходе с бензина на газ.

О пуске двигателя — разговор особый. Создатели изделий № 1, 2, 3 и 5 предлагают пользоваться разнообразными многоискровыми режимами — для пуска мотора, для сушки промокших свечей, для езды с неисправным датчиком и т. п. Нужны эти режимы или нет — решать потребителю. Наши соображения изложены в «Размышлениях эксперта». Отметим лишь, что с утверждением создателей изделия № 5 о неограниченности пробега в режиме асинхронного искрообразования согласиться решительно нельзя — крайне раннее зажигание до добра не доведет.

Вернемся к тому, с чего начали — к детонации. Все исследуемые изделия действительно позволяют управлять углом опережения зажигания, но пользоваться ими нужно весьма аккуратно. Установка позднего зажигания поможет несколько ослабить «звяканье» под капотом, но только ценой потери динамики и увеличения расхода топлива. Более того, на высоких частотах вращения повысится температура отработавших газов, а потому выпускные клапаны долго не протянут.

По той же причине не следует доверять рекомендациям производителей № 1–5 по установке угла опережения зажигания. Резкие нажатия акселератора на прямой передаче с последующим прослушиванием детонационных стуков хороши только для двигателей, заправленных «родным» бензином. Попытки избавиться подобным образом от детонации при дрянном топливе могут привести к такому позднему зажиганию, что догорать смесь будет не в камере, а в выпускном коллекторе.

Вывод прост — устанавливать октан-корректор с целью постоянного перехода на дешевый бензин категорически нельзя. Эти изделия призваны всего лишь облегчить страдания мотора, заправленного не тем, чем надо. Даже современные системы управления, оснащенные датчиками детонации и мощными контроллерами, не допускают работы на низкооктановых бензинах — что же тогда хотеть от простеньких «крутилок»?

Электронное зажигание с октан-корректором и многоискровым режимом ULTRON 1201. Производитель — фирма «Аврора», Санкт-Петербург. Выпускает вариант под «классику» ВАЗ — модификация для датчиков Холла в стадии разработки. Цена 50–200 руб.

Внешний вид изделия изысканным не назовешь — то же относится к внутренностям, несмотря на мощный транзистор зарубежного производства. Вместо традиционного тумблера, включающего многоискровой режим, использован переменный резистор с выключателем. Кстати, число искр в пачке обратно пропорционально частоте вращения коленвала.

Октан-корректор с многоискровым режимом «Мультитроникс-SG». Производитель — фирма «M-Electronics», Москва. Только для систем с механическим прерывателем. Цена 180–200 руб.

Смотрится неплохо, особенно издали. Многоискровой режим включается кнопкой — он рекомендуется для пуска холодного двигателя. Чем выше обороты, тем меньше искр в каждой пачке.

Читайте также  Диодные катафоты в задний бампер приора 2

Октан-корректор с многоискровым сервисным режимом «Импульс». Производитель — фирма «Берта Грин», координаты не указаны. Представляет собой приставку к стандартному коммутатору «Самары». Цена 200 руб.

Изделие приятно взять в руки. При подключении достаточно снять разъем с коммутатора и подсоединить его через переходник октан-корректора. Не искажает параметры штатной системы зажигания и может быть отключен полностью. Умеет организовывать многоискровой режим.

Электронное плазменное зажигание с корректором детонации двигателя «Сонар». Производитель — фирма «Деметра», Санкт-Петербург. Создавалось для «классических» систем зажигания с механическим прерывателем. Цена 310 руб.

Насчет плазмы питерцы погорячились, хотя блок зажигания сам по себе имеет хорошие параметры. Разряд — мощный, контакты — разгружены. Жаль, что дизайн внутрисалонного блока октан-корректора явно подкачал.

Система электронного зажигания с октан-корректором VL-11. Производитель — фирма «Ватерлайн», Москва. Работает с механическими прерывателями, а также с магнитоэлектрическими датчиками (вариант VL-21). Цена 380 руб.

Дизайн — никакой. Октан-корректор явно просится куда-то под панель приборов — крутить рукоятку без шкалы можно и на ощупь. На задней стенке есть полезный тумблер: он позволяет полностью отключить изделие — например, при переходе на газ.

Многоискровое электронное зажигание (коммутатор одноканальный) «Пульсар». Производитель — фирма «СМАК», Тольятти. Существует в разных обличьях — для механических прерывателей, для датчиков Холла, для магнитоэлектрических датчиков. Цена 250–450 руб.

Состоит из двух частей — оригинального коммутатора и собственно корректора. Элементная база и конструктивное исполнение коммутатора хуже, чем у серийных вазовских изделий. Предусмотрен многоискровой режим.

Режим асинхронного искрообразования — штука древняя и, вообще говоря, неправильная, но живучая. Даже такие солидные «звери», как ЗИЛ-131 или «Урал-375Д», возят под капотами аварийные вибраторы типа РС331 — своего рода реле, запитанные через собственные контакты. Вибратор призывался на помощь при отказе штатного зажигания и действовал очень просто: реле сработало — контакты разомкнулись, выключилось — опять замкнулись. В результате система «дребезжала» частотой 250–400 Гц, заставляя катушку зажигания вырабатывать сноп искр, направляемый «куда бог пошлет» — в зависимости от положения бегунка. Последствия очевидны — крайне раннее зажигание, обратные удары и все такое. Поэтому езда в таком режиме допустима только в крайнем случае, когда «назад пятьсот — пятьсот вперед», а помощи ждать неоткуда.

Многоискровой режим некогда был последним писком моды — вспомним популярные системы зажигания типа «Искра-5», «Старт» или «Электроника — 3М-К». С годами ситуация изменилась — при разработке новых коммутаторов серия коротких разрядов была единодушно признана бесполезной и уступила место мощному «герою-одиночке». Тем не менее в режиме холодного прокручивания помощь не повредит — дополнительные искровые разряды могут увеличить вероятность воспламенения смеси и облегчить пуск заупрямившегося двигателя.

Режим «сушки» свечей заключается в том, что при выключенном двигателе система зажигания нагружается персонально на «промокший» элемент — например, на свечу. Затем включается «многоискровость». Далее мнения экспертов сильно расходятся — одни считают, что серия искровых разрядов действительно заставит влагу испариться, другие убеждены, что дополнительных повреждений при этом не избежать. Пожалуй, лучше все же не рисковать и сушить промокшие элементы традиционными способами.

Каталог электронных схем

Предлагаемый блок зажигания (БЗ) был разработан десять лет назад и на данный момент, вероятно, потерял актуальность. Но возможно он пригодится владельцам старых отечественных легковых и грузовых авто. При разработке БЗ автором ставилась цель создать простой и надежный агрегат. По прошествии времени можно с уверенностью сказать, что это удалось. За десять лет не было ни одной поломки. БЗ пережил два автомобиля, а общий пробег перевалил за 300 тыс. км.

По сравнению с промышленным БУЗ-07 имеет меньше деталей и проще в наладке.

БЗ позволяет оперативно, с места водителя, регулировать угол опережения зажигания (УОЗ) в пределах 24 градусов по колен-валу, с погрешностью не хуже 1град. во всем диапазоне частот, не нарушая при этом работу центробежного и вакуумного регуляторов ОЗ.

В БЗ так же предусмотрено: отключение коммутатора во время простоя двигателя с включенным зажиганием, во избежание перегрева выходного транзистора и катушки зажигания; режим много искрового запуска, позволяющий формировать до 10-ти искр за один такт сжатия при прокрутке стартером; функция противоугонного устройства.

Сигнал с датчика зажигания поступает на двухступенчатый ограничитель импульсов. В качестве датчика зажигания можно использовать: бесконтактный, ГАЗовский распределитель, (в этом случае R2 не устанавливается); обычные контакты, (R2 – 150ом); датчик холла ДМИ-2 (R2 – 1-2кОм) – не путать с ВАЗовским датчиком холла, для работы с ним на входе устройства нужен инвертор.

Октан-корректор (ОК) состоит из двух генераторов тока VT1 и VT2 которыми управляют ключи DD1,1 и DD1,2. С их помощью на конденсаторе С1 и на входе порогового элемента DD1,3 формируется напряжение трапецеидальной формы. С помощью R1 регулируют опережение зажигания. От линейности токов заряда и разряда конденсатора С1 зависит линейность регулировки опережения зажигания. Принцип работы ОК поясняет рисунок 2. В двух словах его можно объяснить так: при увеличении частоты вращения двигателя пропорционально уменьшается время задержки, при этом угол опережения зажигания остается постоянным.

Читайте также  Полный привод на соболь своими руками

Рис.2 t зад. – регулируемое время задержки, V пор. – пороговое напряжение микросхемы DD1.

Рис.3 Зависимость угла задержки от сопротивления R1, полученная автором и измеренная на стенде.

DD1,4 , VT3, C2 – таймер формирующий задержку (1-2сек.) отключения.

Резистор R17 совместно с R16 и VT4 образует делитель напряжения предохраняющий VT6 от выбросов перенапряжения на первичной обмотке катушки зажигания (КЗ) и может потребовать корректировки, в зависимости от примененного транзистора VT6. При указанных на схеме номиналах, ограничение происходит на уровне, примерно, 360 вольт.

Цепь обратной связи R18, C5 служит для формирования пачек искр. Она позаимствована от ТК-200, но в отличие от промышленного образца сделана отключаемой по причине конструктивных особенностей блока. Настройку цепи лучше проводить на специальном стенде. Для этого БЗ подключается к стенду согласно схемы стенда, на вход Упр. нужно подать питание, а вместо R18 временно припаять переменный резистор сопротивлением 22-33кОм. При отсутствии стенда можно поступить иначе. К БЗ подключить катушку зажигания, источник питания, вместо прерывателя – кнопку. К высоковольтному проводу КЗ подключить свечу либо разрядник. Вместо R18 – переменный резистор. Подать управляющее напряжение на К1. Добиться того, чтобы при размыкании контактов (кнопки) блок переходил в режим генерации.

Конденсатор С6 влияет на характер искрообразования так же как и в классической системе зажигания т.е. чем больше емкость, тем больше длительность искры, но меньше скорость увеличения напряжения и наоборот. При работе с катушкой Б114 его емкость может быть в пределах 0.022-1.5 мкф, но оптимально 0.47-1.0 мкф.

Выключатель S1 выполняет противоугонную функцию, вместо него можно применить резистор с выключателем (R1). При отключении R1 резистор R9 формирует большую задержку зажигания, при этом двигатель заводится, но ездить не возможно.

При налаживании ОК следует проследить, по осциллографу, что бы в конце фазы разряда конденсатора С1 (КТ2) на самой низкой частоте -10-13 гц не было горизонтального участка (подобрать R10).

Рис.4 Схема подключения БЗ

СЭС – 107 – добавочное сопротивление, Р.Ст.- реле стартера, З.З. – замок зажигания, СТ – стартер, КЗ – катушка зажигания, К – плюсовая клемма КЗ, РЗ – распределитель зажигания.

В авторском варианте БЗ смонтирован в металлическом корпусе от реле регулятора РР-132А. Транзистор VT6 установлен внутри корпуса на изолированной алюминиевой пластине. VT5 закреплен на корпусе блока через слюдяную прокладку.

Вместо КТ848А возможно применить более мощные, составные транзисторы КТ897А, КТ898А. Наиболее удобен для монтажа транзистор КТ898А-1, его можно закрепить непосредственно на корпусе. В этом случае вместо четырех параллельных резисторов R19-R22 можно применить один резистор 56 ом 2вт. Вместо КТ805БМ – КТ817, (с любой буквой). Вместо КТ3102 – КТ315; КТ3107 – КТ362, КТ208, КТ209 с любыми буквенными индексами. Реле К1 – РЭС55А, но подойдет любое малогабаритное, на напряжение срабатывания 6-7 вольт. В качестве КЗ можно применить Б114, Б116, в крайнем случае – Б115 предварительно демонтировав с нее штатное добавочное сопротивление (вариатор тока), емкость конденсатора С6 в этом случае нужно уменьшить до 0.22 – 0.27мкф.

БЗ устанавливается в моторном отсеке, R1 в любом удобном месте в салоне. Для соединения резистора R1 с БЗ следует применить экранированный провод.

Так же имеет смысл доработать бегунок по рисунку 5. Суть операции заключается в напайке медной или латунной пластинки толщиной 1мм на рисунке она выделена цветом.

При установке БЗ на автомобиль следует учитывать, что ОК вырабатывает только задержку. Поэтому самым оптимальным, на мой взгляд, вариантом установки будет такой: отрегулировать двигатель так, чтобы он работал с небольшой детонацией на самом высокооктановом применяемом топливе (регулируется штатным распределителем зажигания); подключить БЗ. Позднее зажигание для низкооктановых бензинов корректировать с помощью резистора R1.

Рис.6 ОК для работы с ТК-102, ТК-200 и их аналогами. R9 устанавливается только для бесконтактных коммутаторов.

В заключение привожу схему ОК выделенного в отдельный блок. Она рассчитана для работы с ВАЗовским датчиком холла и транзисторными коммутаторами ТК-102, ТК-200 и их аналогами. Здесь нужно отметить, что ВАЗовские и ГАЗовские коммутаторы, работающие по принципу время-импульсного накопления энергии, могут работать со сбоями с данным ОК, так-как последний (при больших углах задержки) сильно изменяет скважность импульсов. Поэтому их использование с данным ОК затруднительно.

Фото БЗ со снятой верхней крышкой.

Автор: Алексей Базуев, г. Чайковский.

Источник: automotogid.ru

Автоматика